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PerspectiVe

Diverse Viewpoints on Computational Aspects of Molecular Diversity

Yvonne C. Martin

Computer Assisted Molecular Design, Abbott Laboratories, Abbott Park, Illinois 60064-3500

ReceiVed August 25, 2000

The following reminiscences are as diverse as the mol-
ecules designed from diversity principles. The scientists
invited to participate had contributed to the molecular
diversity literature by 1996snot all invited accepted the
invitation. Sources of inspiration for the calculation of
diversity vary from techniques for document searching,
classical and 3D QSAR, graph theory, and chemical reaction
planning. The contributors each weave a fascinating story
that reveals the sources of their ideas. However, together all
testimonies present an even more fascinating story of how
modern science borrows ideas from many disciplines and
emerges with a slightly different flavor from each group.

The challenge of molecular diversity is the realization that
there are more potentially useful molecules than there are
atoms in the universe.1 Molecular diversity can be used to
design “random” or targeted combinatorial libraries, to select
“representative” subsets of a compound collection for screen-
ing, or to focus and explode a traditional one-by-one synthetic
program. In all cases the question is the same: How does
one select the molecules on which to concentrate? How will
these molecules be represented to the computer? How many
molecules are needed to represent all potential moleculess
or is this even a realistic question?

While most of the reminiscences that follow concentrate
on the pharmaceutical uses of molecular diversity, that by
Gasteiger provides a reminder that the concepts of diversity
and similarity of molecules can be extended to diversity and
similarity of reactions. This is a little-explored area, but one

that could have a large impact on the experimental side of
combinatorial chemistry.

The Emergence of Concepts of Molecular
Similarity and Diversity

Peter Willett

Background. After first receiving a degree in Chemistry
from Oxford University, I went to the University of Sheffield
to take their 1 year MSc Information Science program. I
stayed there to do a Ph.D. on methods for indexing databases
of chemical reactions,2,3 this requiring the development of
ways of measuring the degree of structural similarity between
pairs of molecules. As a result of this, I became interested
in the concept of similarity more generally, and thus read
widely about the similarity and clustering techniques that
were already under active investigation by researchers in
textual information retrieval (IR) but that were not then (the
late 1970s) familiar to the chemoinformatics community. At
the time, these techniques were limited to very small amounts
of data, and I thus started a postdoctoral study that sought
to develop methods that could be applied to large document
databases. In fact, I did not get very far with the work before
I was offered a faculty position and had to start thinking
about preparing lecture courses and all the other responsibili-
ties of a new lecturer; however, it did mean that I had by
then gained an appreciation of the need for clustering
methods that were both effective (i.e., could achieve the
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desired results in the domain of interest) and efficient (i.e.,
achieved these results in a minimal amount of time).

In the early 1980s, I started again to look at methods for
document clustering, focusing upon the hierarchic agglom-
erative methods that had already attracted some attention
from the IR community (see ref 4 for an extended review of
work in this area). Early IR research had focused upon the
well-known single-linkage agglomerative method: our stud-
ies investigated the use of the other agglomerative methods
(such as complete linkage and group average) for document
clustering. The work demonstrated that these other methods
were generally superior to the single linkage method but that
none of them were noticeably more effective than simple,
unclustered text searching, while being extremely demanding
of computational resources.5-7 Shortly after this work had
started, I began an analogous program of research to
investigate the use of clustering methods for chemical
databases, using the experience gained in the text domain
as a starting point. As we shall see, this proved to be a much
more productive application of cluster analysis.

The rationale for this second research program was my
realization that there are clear similarities in the ways that
chemical and textual database records are characterized, and
hence in the ways that those records can be processed. For
instance, the documents in a text database are each typically
indexed by some small number of keywords, in just the same
way as 2D or 3D structures in a chemical database are each
characterized by some small number of substructural features
chosen from a much larger number of potential attributes.
Moreover, both types of attribute follow a well-marked
Zipfian distribution, with the skewed distributions that
characterize the frequencies of occurrence of characters,
character substrings, and words in text databases being
mirrored by the comparable distributions for the frequencies
of chemical moieties. Finally, in just the same way as a
document either is or is not relevant to some particular user
query, so a molecule is or is not active in some particular
biological test, thus allowing comparable performance
measures to be used to assess search effectiveness in the
two types of retrieval system. I have discussed the close
relationship that exists between these two types of database
processing elsewhere8 (although I must emphasize that it was
my colleague, Michael Lynch, who first brought this home
to me as he had already been studying both chemical and
textual information retrieval for several years when I first
joined the Department in Sheffield9).

Comparison of Similarity and Clustering Methods. We
took as our basis for the chemical clustering work the, in
my view, seminal paper by Adamson and Bush,10 which was
the first to suggest that the simple fragments that were already
starting to be used in screening systems for chemical
substructure searching could also be used to quantify the
degree of structural similarity between pairs of 2D structures.
Specifically, Adamson and Bush introduced the idea that one
could measure the resemblance between a pair of molecules
by using an association coefficient based on the number of
fragments common to their bit-strings. We developed this
idea in a Ph.D. study that was carried out in collaboration
with Pfizer Central Research in Sandwich, U.K., with the

aim of developing an automated way of selecting compounds
for biological testing, as an alternative to the existing, and
highly time-consuming, manual selection methods that were
employed when these initial studies were carried out in the
early 1980s. Specifically, the idea was to cluster a corporate
compound file into a set of clusters and then to pick one
compound, or some small number of compounds, from each
cluster in turn for submission to the biological test of interest.
If a selected compound proved to be active, then the other
compounds in its cluster would also be submitted for
testing: a simple idea now but one that was not at all
common at the time. To achieve this end, we first needed to
identify an effective similarity measure, i.e., one for which
a high level of structural similarity would imply a high level
of property or activity similarity; next, to identify a clustering
method that could process the resulting intermolecular
similarities to yield meaningful structural clusters; and then
to ensure that these methods were also sufficiently rapid in
operation to enable them to be applied to data sets of
nontrivial size. The last requirement was of particular
importance since most of the important clustering methods
were first developed for applications in numerical taxonomy
where only a few tens of objects needed to be clustered.11

A problem that has to be faced in any comparative study
of similarity (and/or clustering) methods is the need for an
evaluation criterion that is external to the data used for the
generation of the similarities (or clusters) in the first place.
Adamson and Bush suggested that if the compounds under
study had associated properties or activities then this
information could be used to evaluate a similarity or
clustering method by means of a simulated property predic-
tion experiment. Thus, one could take each compound in
turn and assume its property is unknown, then calculate its
similarity to each of the other molecules in the data set using
the similarity measure under investigation, and obtain a
predicted property value by taking the observed value for
its nearest neighbor (or neighbors). If this is repeated for
each member of the data set in turn, then one can correlate
the predicted values with the original experimental data and
assess the overall effectiveness of the similarity measure by
the extent of this correlation. A similar procedure can be
used to evaluate clustering methods, with the predictions in
this case being based on the compounds occupying the same
cluster as the compound for which a prediction is required.
The basis for such ideas is, of course, the similar property
principle, which was subsequently popularized by Johnson
and Maggiora in their influential monograph on molecular
similarity.12

Our detailed comparative tests13 showed that the use of
the Tanimoto coefficient with simple fragment incidence data
provided an effective measure of structural similarity, and
we then considered how this finding might be applied to
database searching. Our original intention had been to
provide a simple way of ranking the outputs of recall-oriented
substructure searches, but we were able to demonstrate that
such rankings could also be generated for searches of an
entire database, thus resulting in one of the first operational
systems for chemical similarity searching;14 an analogous
system had been described just a few months previously by
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workers from Lederle Laboratories.15 Having identified the
Tanimoto coefficient as an appropriate similarity measure,
we then moved on to consider the various types of clustering
method that could be used for the grouping of chemical data
sets. Over a period of some years, we evaluated some 30
different clustering methods (including hierarchic agglom-
erative and divisive methods, relocation methods, and single-
pass and near neighbor methods) by means of simulated
property prediction as discussed previously. We concluded
that the method due to Jarvis and Patrick was the most
suitable of those tested, and we subsequently demonstrated
its use on subsets of the Pfizer corporate file.16

How Does the Work Stand Up Now?The experiments
summarized above comprised much of the book that I wrote
in 1987 on chemical similarity and clustering,17 and the
Tanimoto coefficient and the Jarvis-Patrick clustering
method have subsequently become the tools of choice in
many applications of molecular similarity analysis. Given
the rate at which chemoinformatics has developed over the
past few years, it is perhaps surprising that these methods
are still widely discussed.

The Tanimoto coefficient continues to be used extensively
for the analysis of fragment bit-string data, despite some
inherent limitations that can produce counterintuitive simi-
larities in some cases;18-20 that said, many of the other
association coefficients that might be used for this purpose
are similar in form and would probably exhibit comparable
behavior. The situation with regard to the Jarvis-Patrick
method is rather different. Our comparative property-
prediction experiments identified Ward’s hierarchic agglom-
erative method as the most effective, but with Jarvis-Patrick
performing almost as well. At the time that these comparisons
were carried out, computer limitations (in terms of both raw
CPU speeds and the clustering algorithms available) meant
that Ward’s method could not be applied to chemical
databases of substantial size and we hence chose Jarvis-
Patrick for such applications. This was rapidly adopted as
the clustering method of choice in commercial chemical
database software, not only to select compounds for random
screening but also for applications such as clustering the
outputs of substructure searches that retrieve very large
numbers of molecules. However, the method does have
limitations,20 and subsequent comparisons, both by us21 and
by others,22 have reaffirmed the general superiority of Ward’s
method. The availability of improved computer hardware and
of the efficient reciprocal nearest neighbors algorithm23

means that this method can now be applied to databases
containing some hundreds of thousands of molecules in an
acceptable amount of time, and the method is thus becoming
available in commercial chemical database software.

With the need to select diverse sets of compounds that
has arisen over the past few years, it is hardly surprising
that clustering has enjoyed a renaissance of interest, although
there are, of course, several other approaches that have now
been developed for this purpose, including dissimilarity-
based, cell-based, and optimization-based methods.24 Even
so, the grouping of objects is a very natural human procedure,
and I would thus expect there to be continuing interest in
cluster-based approaches, not just for diversity analysis but

also for database processing more generally. In particular,
there is considerable interest in clustering in the rapidly
growing area of data mining, and it is possible that research
here will provide new algorithms and data structures of
potential benefit to the chemoinformatics community.

More Recent Work. The work described above was done
quite some time ago and long before developments in
combinatorial chemistry resulted in the current interest in
methods for diversity analysis. We became involved in this
as an indirect result of the development of 3D pharmaco-
phore-searching systems. These often yield very large outputs
in response to user pharmacophoric patterns, and this led us
to reconsider our previous work on grouping 2D substructure
search outputs, where the output is clustered and where a
representative subset is chosen for review by selecting one
molecule from each cluster in turn. Thus, one obtains a
representative set of dissimilar molecules by first identifying
all of the similar molecules (i.e., those in the same clusters),
which seems a rather roundabout way of doing things. We
were hence attracted to dissimilarity-based approaches to
compound selection, where one tries to identify a maximally
dissimilar subset of the molecules in the database directly
rather than indirectly via an initial clustering. The general
algorithm for this approach, as first described by Bawden25

and Lajiness,26 involves selecting a compound at random and
then iteratively choosing that previously unselected com-
pound that is most dissimilar to those that have already been
selected.

The Bawden-Lajiness algorithm for dissimilarity selection
is very simple in concept but has an expected time complex-
ity of orderO(n2N) for selecting ann-compound subset from
an N-compound data set, and it might hence be too time-
consuming for online subset generation from large 3D search
outputs. It was at this point that we turned again to work on
hierarchic document clustering. The various hierarchic
methods differ only in the precise criterion that is used to
measure the similarity between two clusters of documents
at each stage in the creation of the hierarchy. The appropriate
criterion for the intercluster similarity in the group-average
method is the average of all of the pairwise interdocument
similarities, where one document is in one of the two selected
clusters and the other document is in the other cluster.
Voorhees27 demonstrated that precisely the same average
similarity could be obtained from a procedure that involved
just a single similarity calculation using the weighted
centroids of the two clusters. This elegant equivalence
provides a highly efficient way of implementing the group-
average method; however, we realized that it can also be
applied much more generally to any situation where sums
of similarities, rather than individual similarities, are required;
where the cosine coefficient is used to measure the similarity
between pairs of objects; and where the objects that are being
compared are characterized by some form of vector-like
representation (such as fragment bit-strings). Specifically,
Voorhees’ result can be used to choose the most dissimilar
molecule in the selection step of the Bawden-Lajiness
algorithm; if by “most dissimilar” we mean that molecule
with the largest sum of dissimilarities to the molecules that
have already been chosen.28 This results in an algorithm with
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an expected time complexity ofO(nN), and the procedure
can hence be used to select subsets not just from 3D search
outputs but also from entire databases, a requirement that
was first becoming apparent at around this time.29

Although other selection algorithms have since been shown
to be superior,30-32 the sum-based algorithm provided the
starting point for our work on comparing reagent-based and
product-based approaches to compound selection. Specifi-
cally, the Voorhees’ equivalence can be used to provide an
extremely rapid way of computing the diversity of a set of
compounds,33 a fact that we were able to use subsequently
in the fitness function of a genetic algorithm (GA) that we
developed for dissimilarity-based compound selection.34 This
is sufficiently fast to enable the selection of combinatorial
libraries not only from the sets of reagents in a combinatorial
synthesis but also from the fully enumerated set of products
for that synthesis, thus permitting a direct comparison of the
diversities of the two types of library. Our initial results
demonstrated the superiority of product-based approaches,
in terms of yielding more diverse libraries, and this has since
been confirmed in subsequent, more detailed compari-
sons.35,36

I’ll finish this personal account as I started, by noting
another link between IR and chemoinformatics, specifically
a GA-based approach we developed to optimize the weights
associated with a set of descriptors. The basic idea was first
published in a paper describing the calculation of weights
that represent the ability of keywords to discriminate between
relevant and nonrelevant documents in searches of text
databases.37 While this study was in progress, we developed
an analogous GA to calculate weights that represent the
ability of physicochemical properties to discriminate between
drug and nondrug compounds.38 Such drug/nondrug studies
are now common,39,40but it proved quite difficult to persuade
referees that this was an appropriate thing to try to do when
our work was first submitted for publication. Most recently,
we have incorporated these properties in our product-based
selection algorithm so as to design libraries that are both
druglike and diverse,41 and current work is considering ways
in which we can still further increase the effectiveness of
such integrated selection procedures.

The Emergence of the Concept of Molecular
Diversity at Pharmacia

Michael Lajiness, Mark Johnson, and Gerry Maggiora

The Roots in Molecular Similarity. The motivation to
investigate and develop the concept of molecular diversity
grew out of an even earlier and broader motivation to explore
the concept of molecular similarity. Although the latter
concept has many diverse seeds, the seed at Upjohn† was
planted when, in the mid 1980s, Mark began seeking a QSAR
formalism free of the congeneric restrictions associated with
Hansch42 and Free-Wilson analysis43 and the high dimen-
sional modeling operations of pattern recognition.44 Mark’s
work led to the development of a graph-theoretic metric for

measuring the similarity between two compounds based on
their maximum common substructure.45 These results, how-
ever, turned out to be of more theoretical than practical
interest. Two reasons relevant to the present discussion were
the difficulty of developing suitable software for implement-
ing the ideas and the focus on analyzing the small data sets
associated with QSAR studies at that time. Still, the idea
grew that a similarity-based formalism would find a place
in drug discovery.

When Gerry joined Upjohn as Director of what was then
called the Computational Chemistry Unit in 1985, he took
an immediate interest in molecular similarity as a concept
that merited further exploration in terms of possible applica-
tions in drug discovery. The paper by Willett and Winter-
man13 had a big impact on our discussions. It introduced us
to the work being carried out in chemoinformatics, in general,
and Peter’s group, in particular. This study clearly cor-
roborated the intuitive principle that similar structures tend
to have similar properties. It also demonstrated that some
plausible molecular similarity measures work better than
others do.

Shortly thereafter, Mic joined the CADD unit. He was
responsible for working with scientists in getting data in to
and out of Cousin, our “home grown” chemical-informatics
database management system, and in bringing in and
developing tools for doing so. Unlike the SAR focus that
characterized many of our earlier discussions, Mic’s perspec-
tive derived from his experiences with handling the large
amount of chemical and screening data that resided in
Cousin. When Subhash Basak46 presented a seminar on
molecular similarity at Upjohn, Mic recognized a similarity
tool immediately relevant to his interests. With Mic on board,
Gerry organized a molecular similarity team with Tom
Hagadone, who had programming responsibilities for Cousin,
as an ad hoc advisor. An important occurrence, which helped
to further crystallize much of our thinking on molecular
similarity, came from our participation in the 1987 Interna-
tional Chemical Structures Conference held at the Leeuwen-
horst Congress Center in The Netherlands. Molecular
similarity was now an idea ready to happen at Upjohn, but
it was still not readily accepted within the Pharmaceutical
Research Division of the company.

Development of Molecular Similarity at Upjohn. Ini-
tially, most of our effort was directed at implementing
similarity searching of the Cousin database. The program
POLY, developed by Subash, provided a quick solution.
POLY computed more than 90 topological indices that could
be reduced to 10 principal components without losing
significant intermolecular distance information. These 10
variables were easily stored in the Cousin system and
provided our first similarity searching capability. At that time
there was considerable debate concerning the “meaning” of
these topological indices. For us they provided a new tool
that could be used by medicinal chemists to find sets of
similar compounds in large chemical databasesspractically
speaking, that was all that mattered.

During the early days, before the field of molecular
similarity had gained full status as a legitimate area of
chemical research, the terms “molecular similarity” and,

† The Upjohn Company is now incorporated into the Pharmacia Corpora-
tion as a result of two mergers since 1995, but it was the name of the
company under which the work discussed here was carried out.
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consequently, “molecular dissimmilarity” or “molecular
diversity” did not appear in titles, keyword lists, or abstracts.
Rather, work for which such terms might now serve as an
umbrella term was disparate and dispersed in unrelated
journals. Gerry broached the idea of organizing an ACS
minisymposium to bring the relevant investigators together
to present their work as it related to molecular similarity as
a concept of interest in its own right. The minisymposium
was held in 1988 and resulted in the first volume of collected
writings on molecular similarity.12 Interestingly, the word
“similarity” that heretofore had been largely absent in
scientific reviews sessions at Upjohn, now began to be heard
with great regularitysthe concept had become part of the
scientific culture at Upjohn!

Dissimilarity Selection Slowly Takes Root. Another line
of development was directed toward increasing the efficiency
of compound screening at Upjohn. At the time it was quite
popular to screen every compound in the proprietary col-
lection. As high throughput screening (HTS), let alone ultra-
HTS, methods were yet to be developed, it took considerable
time to screen the thousands of compounds in our collections
sometimes from 6 months to a year! Thus, the idea that a
relatively small subset of our entire compound collection
could be obtained that had a higher probability of containing
active compounds than would be the case with a random
sample of comparable size was very appealing. Willett,
Winterman, and Bawden16 proposed a nonhierarchical clus-
tering approach based on molecular fragments as a means
for selecting a representative subset of compounds for
screening. As our compounds were represented by only 10
principal component scores, we could accomplish a nonhi-
erarchical clustering using PROC FASTCLUS.47

Although we found the rationale for screening diverse
collections of compounds quite compelling, Mic recalls
having to cajole project teams to use “dissimilarity thinking”
when selecting compounds for screening. Nor was dis-
similarity thinking as a means of selecting compounds for
screening quickly accepted by the QSAR community. When
we presented our work at the 1988 European QSAR
Conference,48,49 there were few positive reactions; most of
the excitement at the conference was directed toward
emerging developments in 3D QSAR. Mic also recalls that
at the QSAR Gordon Research Conference the following year
only a handful of individuals attended his poster on dis-
similarity-based compound selection, even though an oral
session on molecular similarity was well received.

Emergence of Diversity as a Concept in Its Own Right.
Things changed dramatically with the advent of combina-
torial chemistry and HTS technologies. As time went on,
more and more people became accustomed to the ideas
behind dissimilarity thinking. Soon it became accepted, even
expected, at Upjohn to first examine dissimilar or diverse
collections of compounds in a new assay. In the early 1990s
dissimilarity-based selection tools were used to enhance the
diversity of our proprietary compound collection by identify-
ing commercially available compounds for purchase that
were structurally dissimilar to compounds already in our
collection.50,51 It is our recollection that the term “dissimilar-

ity” gave way to “diversity” primarily in response to the
arrival of combinatorial chemistry and library design.

Dissimilarity became mainstream at Upjohn in the mid
1990s when it was integrated into our Cousin chemical-
information system. Scientists now had access to an easy-
to-use tool that could be used to select structurally diverse
subsets of compounds from a much larger set. This proved
useful for browsing substructure search results, selecting
reagents for combinatorial chemistry, and for selecting active
compounds for secondary screening. Currently, dissimilarity
or diversity tools remain very much in use within Pharmacia,
and we continue to evaluate new ways for characterizing
the diversity of compound collections and combinatorial
chemistry libraries.52,53

It is interesting how far our industry has come in adopting
dissimilarity thinking and the associated tools from a point
where almost no one considered diversity or dissimilarity
advantageous to a point where virtually everyone uses
diversity tools to purchase compounds, design libraries, or
evaluate collectionsseven whole conferences have been
devoted to the subject of diversity!

Diversity of Combinatorial Libraries:
The Challenge at Chiron

Eric Martin

Early Design of Combinatorial Libraries . Recalling my
initial work in combinatorial library design, I am struck by
how the solution to nearly every difficulty was fortuitously
supplied by someone else. First came the problem of
combinatorial library design itself. When I presented the first
poster on “Combinatorial Library Design” at the 1993 QSAR
Gordon Conference and published the corresponding pa-
pers,54,55 I believe I was simply the first computational
chemist to be asked to design a combinatorial library from
a very large set of potential building blocks. Since combi-
natorial chemistry was originally applied to biopolymers, the
number of possible building blocks had always been small.
Since there are only 8000 coded tripeptides, one could easily
make them all by parallel synthesis. Even using all com-
mercially available protected amino acids gave just 60×
60 × 60 ) 216 000 tripeptides, which could all be made as
3600 pools of 60 by split resin synthesis. But in 1992,
following a suggestion by Steve Kent, Ron Zuckerman began
robotically producing peptoids by submonomer synthesis.56

Suddenly, at least 1000 readily obtainable low molecular
weight amines were available as building blocks. It was
impossible to make 109 tripeptoids, and he could no longer
defer to nature for a small privileged subset. Thus, an
advance in library synthesis produced the corresponding
practical problem of combinatorial library design at Chiron.

The notion of molecular diversity was already com-
monplace. However, I needed rigorous tools to measure and
maximize molecular diversity, and I wanted something more
continuous and quantitative than cluster analysis. Over lunch
at a previous Gordon Conference, Nouna Kettaneh-Wold had
acquainted me with D-optimal design for selecting substit-
uents for QSAR regression modeling. While my goal was
not to fit a regression model, I did want a subset of points
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that covered the full dimensionality of a property space as
nonredundantly and orthogonally as possible. Since D-
optimal design maximizes the variances within properties
and minimizes the covariance between properties, it was ideal
for this purpose. Thus, Nouna had provided me with a
molecular diversity measure, which commercial programs
could optimize, that was perfect for library design.

Now that every available amine was a potential building
block, I could no longer use precompiled Hammett-type
parameters to create the property space.57 I hoped, instead,
to combine topological indices58 as overall molecular shape
descriptors with Daylight fingerprints59 as local chemical
functionality descriptors. Thus, I needed somehow to com-
bine a 2048-D binary fingerprint space with a continuous
topological index space to produce a single, small, coherent,
Euclidean property space. I knew it was not valid to simply
perform principal components analysis (PCA) on the binary
space, but I knew of no statistical tool to convert the binary
space into an Euclidean space of minimum dimension.
Coincidentally, I was at the very same time proofreading a
chapter on distance geometry for Jeff Blaney and Scott
Dixon.60 It was several days before it occurred to me that
these were the very same problem! The solution was to use
the Daylight fingerprints to construct a Tanimoto similarity
matrix; then apply multidimensional scaling (MDS), the
statistical analogue of distance geometry, to create the
Euclidean property space that best reproduced the pairwise
similarities. This space could then be compared to and
combined with the topological shape space by PCA.

The third problem was incorporating isosterism into the
property space to represent, for instance, that a tetrazole ring
can substitute for carboxylate, because they put negative
charge at similar locations. With the Daylight toolkit61 it was
easy to write SMARTS rules to identify atomic properties
such as ionization, radius, H-bonding, or aromaticity. For
each building block, I could then make an “atom layer table”
that summed each property, for all atoms, at each bond-count-
distance from the site of template attachment. I wanted to
create a similarity matrix and property space as I had for
the Daylight fingerprints, but Tanimoto similarity assumes
strings of binary data rather than tables of continuous values.
I had seen several “generalizations” of Tanimoto distance,
but none seemed to quite capture its spirit. On the basis of
rather clumsy arguments, I devised “Smin/Smax” similar-
ity: the sum of the minima of the corresponding table cells
divided by the sum of the maxima. I liked the way the
coefficient behaved, but was hard pressed to justify it. Soon
afterward, at an American Chemical Society meeting, Gerry
Maggiora spoke on fuzzy logic.62 He described how the
minimum and maximum are fuzzy logic analogues of the
intersection and union. Hence, my Smin/Smax similarity was
precisely the fuzzy logic extension of Tanimoto similarity,
and I was now justified in using it.

Thus, every difficult piece of the library design puzzle
was supplied, as if by providence, at just the right time. The
problem itself was offered to me when Ron Zuckerman
began to employ submonomer synthesis. Nouna Kettaneh-
Wold introduced me to D-optimal design, which provided
both a measure of diversity and the engine to optimize it.

Blaney and Dixon’s distance geometry chapter suggested
MDS as a rigorous way to incorporate binary data into an
Euclidean property space. Finally, Gerry Maggiora’s lecture
on fuzzy logic justified the use of Smin/Smax similarity to
compare atom layer tables. I have never properly thanked
all these contributors, and I am pleased to have the
opportunity to publicly thank them now.

How Do I Feel about the Work Today? By initially
focusing on maximum diversity, I solved only half of the
problem. After finding many potent ligands, which were hard
to convert to effective drugs, we soon noticed that maximiz-
ing diversity inadvertently biased our libraries toward heavy,
hydrophobic, flexible compounds. Adding a mechanism to
constrain the D-optimal diversity selection to a desirable
distribution of physical properties, QSARs, and docking
results completed our approach to library design.63,64We have
since added improvements, such as sensitivity analysis65 and
3D similarity measures.66,67Nevertheless, the basic formula
remains the same: devising molecular similarity measures
that can be computed for any potential substituent, converting
the similarities to a single, coherent, Euclidean property space
with MDS, and selecting a D-optimal subset to maximize
diversity (now subject to additional pharmaceutical con-
straints) are still the bases of our library design efforts today.

Abbott Perspectives on the Calculation of
Molecular Diversity

Yvonne C. Martin and Mark G. Bures

This reminiscence reflects the work and intense discussions
of Yvonne Martin, Mark Bures, and Rob Brown (now at
Pharmacopoeia).

Yvonne’s early work involved traditional QSAR of small
sets of molecules. Work published in 1973 by Hansch and
colleagues68 reported using cluster analysis to group together
aromatic substituents that are similar in hydrophobic, steric,
and electronic properties. A good series design would involve
the synthesis of one analogue from each cluster; this would
provide the maximum uncorrelated spread in physical
properties, a diverse subset in today’s terms. Yvonne
extended the cluster analysis to substituents at an aliphatic
site.69 She and Helen Panas70 also showed that cluster
selection gave a series with better separation of physical
properties (more diversity!) than traditional manual series
design or than a computer program71 that helped medicinal
chemists choose diverse substituents, but that it also allowed
the user to reject hard-to-make molecules. This enthusiasm
for cluster analysis was further expanded to include 3D
CoMFA steric descriptors of molecules aligned by a common
pharmacophore.72 Cluster analysis was preferred to compet-
ing strategies71,73 mainly because in practical situations it is
important to know for a design which molecules can
substitute for one another, that is, are similar to each other.

Mark became involved in molecular diversity in the early
1990s when Jim McAlpine, who was setting up high
throughput screening at Abbott, started to purchase com-
pounds to augment the Abbott collection. We decided to
describe molecules by their Daylight fingerprints61 and use
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Jarvis-Patrick clustering74 to group them. Precedents for this
were Peter Willett’s analysis clustering algorithms17 and Jeff
Blaney’s work clustering the whole DuPont compound
collection.75 We also realized that diversity was not the only
criterion and put into place exclusion rules to avoid purchas-
ing reactive, unstable, or otherwise unattractive compoundss
those that would not make good leads. Our first strategy was
to cluster the offered compounds with those at Abbott for
which there was enough sample for HTS, identify the clusters
that contained no Abbott compounds, and suggest for
purchase one compound from each of these clusters.

Mark soon found that this strategy produces some very
large clusters of very diverse structures and also many
singletons. When he examined the singletons he discovered
that often two or more of these were similar, but the Jarvis-
Patrick algorithm did not form them into a cluster. Accord-
ingly, Mark would postprocess the suggested list to winnow
out one of a pair of similar singletons. From our experience
with 3D molecular modeling, particularly substructure
searching,76 and pharmacophore detection,77 we also expected
that intermolecular property-based 3D descriptors would
provide a more realistic description of the molecules
considered. However, at this point we (1) did not have a
metric for the quality of a clustering run; (2) did not know
which type of molecular descriptor would perform best; and
(3) did not know which clustering algorithm would perform
best.

To investigate these problems, we were given permission
to hire Rob Brown, who had just obtained his Ph.D. with
Peter Willett. Rob phrased the question as “Which combina-
tion of descriptors and clustering methods best groups active
compounds together and away from inactive compounds?”
Following the precedent of Willett, Rob used a number of
easily calculated molecular descriptors and available algo-
rithms to cluster these data sets.22 He also implemented a
program to generate a single-conformation 3D pharmaco-
phore fingerprint.78

Rob initially investigated high throughput screening data,
but the proportions of active compounds and the noise in
the data made it hard to see the signal in the data. Yvonne
then remembered the compounds screened in the late 1950s
for inhibition of monoamine oxidase. These 1650 com-
pounds, of which 390 have some activity, were mainly hand-
selected by a medicinal chemist who was searching for a
novel type of inhibitor of monoamine oxidase. There are two
series of synthesized molecules in the set, however: acyl-
hydrazines based on the compounds reported earlier by
Hoffmann-LaRoche; and propargylamine derivatives, a series
designed from an early weak screening hit. We also selected
two more recent data sets for which most of the molecules
tested were designed and synthesized for the project.

Because the goal of this work was to select descriptors
and clustering methods most appropriate for selecting
compounds for biological testing, to measure clustering
effectiveness Rob tabulated how well a method placed only
active compounds in clusters with other active compounds.
The higher the proportion of actives in a cluster, the more
likely one is to discover that “active” cluster by testing only
one member.

Before it made sense to perform the clustering, we needed
to reassure ourselves that “similar” compounds have similar
biological properties and that as molecular similarity de-
creases so does the biological similarity. Rob measured the
pairwise similarity of all compounds to each of the actives
and produced a histogram of similarity vs the fraction of
compounds within that similarity window that are active. He
found that if compounds are approximately 0.85 chemically
similar, then if one is active the other has an 80% chance to
also be active.

We concluded that structural diversity in a data set for
biological screening does not depend on some measure of
maximum diversity, only that the compounds have no
neighbors that are more than 0.85 similar. This insight led
to a simplification of the compound selection strategy: we
now compare the vendor database with the Abbott com-
pounds available for screening and reject those that are 0.85
similar to an Abbott compound. We then cluster the
remaining vendor compounds and select one from each
cluster.

Rob discovered that the major problem with our previous
strategy was with the Jarvis-Patrick clustering method. Of
the clustering methods tested, Ward’s performed the best and
is fast enough to cluster databases of reasonable size.
Different descriptors did make some difference. Although
we had expected our 3D pharmacophoric feature descriptor
set to perform the best, descriptors based on the structure
diagram of the molecule performed better than any derived
from atom-based properties of the Concord 3D structure. The
best performer was a fragment-based fingerprint, which
marginally outperformed more sophisticated 2D fingerprints.

On the basis of this work, a measure of “diversity density”
of a data set is the average number of compounds per
“biohomogeneous” cluster and a measure of raw diversity
is the number of biohomogeneous clusters in the data set.
The monoamine oxidase has an average of 1.9 compounds
per cluster; the Abbott library in 1992 (before diversity
additions), 2.6; and one particular combinatorial library,
16.2.79

We also observed that the Abbott collection contains
>90% of the possible pharmacophoric triangles with 0.5 Å
tolerance based on hydrogen bonding acceptor and donor
properties, positive and negatively charged groups, and
aromatic ring centers.

Because we believe that physical properties are somehow
correlated with biological properties, at least in smaller sets
of molecules, Yvonne convinced Rob to perform a similar
analysis using physical rather than biological properties.80

He found the same order of accuracy of descriptors and
clustering methods for predicting octanol-water and cyclo-
hexane-water logP; acid-base pKa; Kier-Hall Φ andκR1,
κR2, andκR3; molar refractivity; surface area and volume;
and number of hydrogen bond donors and acceptors. We
found that the descriptors do contain information about each
of these properties and that there is no need to augment the
substructural descriptors with physicochemical ones.

To enhance diversity in combinatorial libraries we use a
genetic algorithm that simultaneously considers molecular
weight redundancy in one position of the molecule, CLOGP
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distribution of the library, and diversity measured as the
number of clusters included.81

Even Ward’s clustering is not perfect, however. In one
case our selection method had led to the purchase of a large
set of analogues. This was discovered when>200 “diverse”
compounds hit in a screen. Rather than being dismayed by
this, the medicinal chemist was delighted to get a large
volume of SAR very quickly. Probing the issue further, we
discovered that hits from HTS are much more likely to be
followed up with synthesis if there are a number of analogues
available for testing. Our current compromise is to purchase
compounds only from large clusters. We expect that if one
of the compounds hits, then we will be able to purchase a
number of analogues to fill out the SAR and so guide the
decision as to whether to start a synthetic program around
this hit.

In summary, what started out as a simple exercise in
selecting compounds to purchase evolved into chest-beating
claims that “my database is more diverse than yours”, then
returned to a more measured view of diversity that empha-
sizes the relevance of the diversity measure for designing
libraries for biological testing.

From Synthesis Design to Combinatorial
Chemistry - and Back Again

Johann Gasteiger

I want to use this invitation to contribute a section to this
special perspective on molecular diversity in theJournal of
Combinatorial Chemistryto tell a story about the interplay
of scientific interests and outside funding possibilitiessand
of being stubborn!

I guess I have to start with my Ph.D. work that dealt with
the elucidation of reaction mechanisms and left forever in
me the desire to understandsand modelschemical re-
actions. Thus, for a long time my group has worked on the
development of EROS (elaboration of reactions for organic
synthesis) that was to be applied both to reaction prediction
and synthesis design.82,83 However, more and more we had
to realize that we have to segregate these two types of
applications.

In came a very able co-worker, Wolf-Dietrich Ihlenfeldt,
who almost single-handedly developed a new system,
WODCA (workbench for the organization of data for
chemical applications), for synthesis design.84 The system
was a drastic departure from our previous attempts, as it did
not bother with explicitly modeling chemical reactions.
Rather, the system concentrated on the comparison of
chemical structures.

One of the first and most powerful tools for synthesis
design incorporated into the WODCA system were similarity
searches.85 These were designed to rapidly find relationships
between a synthesis target and available starting materials.
Quite a few criteria were developed for the definition of
relationships between the structure of a target compound and
an available starting material. In fact, we explored about 50
different similarity criteria and still have more than 40
contained in WODCA.

Many of these criteria are based on substructure perception,
e.g., a target and a starting material are considered as similar
if they contain the same ring system or if they correspond
in their carbon skeleton. However, of even more importance
are those criteria that are based on generalized reactions: two
structures are considered similar if they can be interconverted
by certain reaction types. For example, a structure is
considered similar to another one if it can be converted into
this molecule by oxidation or by a substitution reaction. Thus,
these methods do not only perceive similarity but they also
tell which reaction types can utilize these similarities in
synthesis design.

The important point is that these similarity criteria can be
translated into structure transformations. An entire database
of available starting materials can be converted according
to these similarity criteria into transformed structures once
and for all. Then, only the query structure has to be
transformed to submit it to a similarity search in the
transformed structure database. This, combined with a
hashcoding scheme,86 allows for very rapid similarity
searches.

At the same time as these developments on the perception
of structural similarity useful for the design of syntheses were
going on in my research group, I was project leader for
building the ChemInform reaction database for the Fachin-
formationszentrum (FIZ) in Berlin.87 Quite a few of the
members of the scientific board of FIZ Chemie became rather
frightened at the prospect of having in a few years 200 000
and more reactions in a database. Who is going to be able
to scan through such a large database? Will the user be
swamped with such a high number of hits of reactions that
he will not be willing to analyze the results of a query? The
suggestion was to keep only a few representative reactions
(whatever that meant) of previous years in the database and
put emphasis on new reactions. I had to quite vehemently
argue for the value of information imbedded in every single
reaction instance. Each variation in the structure of starting
materials or products carries important information on the
scope of a reaction type. The point can therefore only be to
keep each individual reaction but to organize them into
reaction types in order to make reaction searching more
efficient, more rapidly leading the user to those reactions
he/she is mostly interested in.

The question was then, how could reaction instances be
grouped into reaction types? Or, to put it into other words:
how can the similarity of reactions be perceived?

The chemist’s concept of a reaction type clearly rests on
mechanistic considerations: Reactions are conceived of
belonging to the same type if they have the same reaction
mechanism, if they are governed by the same physicochem-
ical effects. Over the years we had developed a variety of
empirical methods to quantify all-important chemical effects
such as charge distribution,88 inductive effect,89 resonance
effect,90 polarizability effect,91 and bond dissociation ener-
gies.92

We had put great effort into making these methods quite
rapid, as we had to evaluate a sizable number of reasonably
large structures in reaction prediction and synthesis design.
These procedures had been collected into the package
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PETRA (parameter estimation for the treatment of reactivity
applications).93

Thus, it suddenly became quite clear what to do: use the
values of these physicochemical effects calculated for the
atoms and bonds at the reaction center to perceive the
similarity of reactions. Reactions that have similar values
for these physicochemical effects at the reaction site must
belong to the same reaction type and should therefore be
grouped together.

We first used machine learning techniques such as
conceptual clustering to perceive the similarity of reactions
exploring both these physicochemical effects and the sub-
structures that are bound to the reaction site.94 Later on we
switched to self-organizing neural networks for similarity
perception solely relying on the quantitative values for
physicochemical effects at the reaction site.95

Thus, we had ended up usingstructural similarity for
the design of syntheses, andsimilarity of reactions as a
basis for making searching in reaction databases more
efficient.

In the beginning of the 1990s we had to realize that
although we had put nearly two decades of work into the
development of synthesis design tools, organic chemists were
not prepared to use them. (We were not in a singular
situation: None of the other synthesis design systems had a
broad user community!)

Thus, our attention shifted to the relationships between
chemical structure and biological activity. The idea was that
similar factors such as those responsible for chemical
reactivityscharge distribution, polarizability, and steric
effectssare also operating in the binding of a ligand to its
receptor. Clearly, the three-dimensional structure of a ligand
also plays a dominant role. Here we were in the lucky
position of having already developed the 3D-structure
generator CORINA that is able to automatically produce a
3D model for any organic molecule from its constitution as
embodied in a connection table.96

Now the things that we had worked on for many years
had to be put together: 3D structures, physicochemical
effects, and similarity perception by neural networks.97

The 3D structure allowed us the calculation of molecular
surfaces, and on the basis of the partial charges on the atoms
as obtained from the PEOE method,88 the electrostatic
potential on the molecular surface could be calculated. As
the PEOE method is quite rapid, large data sets of molecules
such as those obtained from combinatorial chemistry experi-
ments can be processed with a reasonable amount of
computation time. However, we had not yet solved the
problem. Methods that establish relationships between objects
and their properties by learning from data such as statistical
or pattern recognition methods or, as in our case, neural
networks need a uniform representation of the objects and
have to describe the objects with the same number of
descriptors. In our case, the electrostatic potential on the
molecular surface had to be transformed into a fixed set of
descriptors, irrespective of the size of the molecule or the
molecular surface. For this purpose the mathematical pro-
cedure of autocorrelation was used to transform the molecular
electrostatic potential into a set of 12 descriptors.98 We could

show that such an autocorrelation of the molecular electro-
static potential was able to establish the similarity and
dissimilarity of three different combinatorial libraries.99

Where have we gone since then? We have developed a
hierarchy of molecular descriptors based either on the
constitution, the 3D structure, or on molecular surfaces that
consider a variety of chemical effects such as charge
distribution, polarizability, as well as molecular electrostatic,
hydrogen bonding, or hydrophobicity potential.100

We could show that these descriptions of the structure of
molecules are quite useful for finding correlations with
biological data. It is also quite clear that for a given problem
different structure descriptions have to be explored in order
to find one that is best suited for modeling a relationship
between chemical structures and their biological properties,
for the interaction of a ligand with its receptor can be
governed by quite different effects depending on the receptor
being studied.

In these efforts, neural networks have been of invaluable
help.97 It is our strong conviction that any study of the
relationships between chemical structure and biological
activity should first use an unsupervised learning method in
order to establish whether the structure representation chosen
is useful for reproducing the biological activity under
investigation. Only when this has been established should a
supervised learning method be employed to develop a
quantitative model of this relationship. We are mostly using
self-organizing (Kohonen) neural networks for unsupervised
learning, and back-propagation or counterpropagation neural
networks for supervised learning.

What next? Reactions! Over the years we have continued
working on understanding reactions. Three lines of research
and development were pursued: synthesis design (WODCA),
reaction prediction (EROS), and acquisition of knowledge
on reactions from databases (CORA).101 Substructure searches
have been incorporated into WODCA, allowing it to be
applied to the design of combinatorial libraries. EROS has
been developed to handle a variety of reaction techniques,
from laboratory reactions to combinatorial syntheses.83 The
system CORA has been used to define the diversity of
chemical reactions.102

In the community it becomes increasingly clear that a
better understanding of the reactions employed in parallel
synthesis and combinatorial chemistry is absolutely neces-
sary. A large part of work has to be devoted to the
optimization of a reaction type. If computer methods can be
used for establishing the scope and limitations of a reaction
type, valuable time and money could be saved. The challenge
given by reactions and by synthesis design is still existing!

Tripos Perspectives on Molecular Diversity:
Looking toward General Methods of

Library Design
Richard D. Cramer

My own perspective on diversity in combinatorial chem-
istry owes much to the converging contributions of my
colleagues at Tripos, particularly those of David Patterson
and Bob Clark. For example, it was Dave who became most

Perspective Journal of Combinatorial Chemistry, 2001, Vol. 3, No. 3239



convinced at the 1993 Gordon Conference on QSAR that
molecular diversity and combinatorial chemistry were be-
coming a new and critical concern for Tripos’s software
customers. He and I soon responded by turning our attention
from improvement of Leapfrog and DISCO to development
of two of the earliest and still popular “diversity software”
products, Legion and Selector, for the construction and
design, respectively, of combinatorial libraries. Of course
we then had only the crudest of ideas about how combina-
torial libraries should be designed, and I bought several
dinners for Eric Martin while trying to understand how the
pioneering Chiron group55 thought about the new “diversity”
buzzword. The resulting first release of Selector (end 1994)
helped the user to select one or more “representative”
building blocks from each cluster among a set of reagents.
These clusters were automatically generated hierarchically
once the user provided the candidate reagents, the number
of these to select, and the physical properties and weights
to use in the clustering (hence in the selecting).

But “which of the physical properties provided by Selector
should we use for clustering/selecting?” was a logical next
question, asked of me with particularly memorable emphasis
by computational chemists from Schering AG (Berlin).
Although I readily agreed to the importance of this question,
I had no idea then how to answer it. Motivation to start
thinking about it came quickly, though, from my boss,
Tripos’s president John McAlister. In early 1995 John found
a way for Tripos to start becoming “more than a software
company”, by allying Tripos with PanLabs to produce a
“general screening library”, trade-named Optiverse.103 Tri-
pos’s contribution was to be design, marketing, and sales,
and Dave and I were the ones charged with deriving
principles and methods for screening library design.

Since by definition there can be no advance information
about the screening targets for such a library, we could
imagine only three design principles, the first two almost
self-evident:

• Avoid structures whose physical properties are less
compatible with good oral bioavailability (e.g., heed the
Lipinski104 rules).

• Avoid substructures that are likely to confer unwanted
toxicities or other nonspecific biological responses.

• Assuming a “neighborhood behavior” (meaning that
“similar” structures usually have similar biological proper-
ties), the design should space the structures to be synthesized
far enough apart to avoid the presumed waste of repeatedly
“looking in the same place” for bioactivity.

Ever since, my own scientific activities have mostly
addressed just three words of the third principle, “far enough
apart”. How far is “enough”? In what “property space” is
this distance best measured? Can a “better” property space
be devised (where “better” means a higher frequency/
intensity of neighborhood behavior)? Is there any objective
way to compare property spaces? And most importantly,
what other applications exist for a “better” property space?
(Indeed, and ironically, today the third design principle itself
seems questionable. To rapidly distinguish the “true hits”
from the equally numerous “false positives” generated by
even the most accurate HTS, it is instead an increasingly

common practice to rely on “neighborhood behavior” by
requiring that any apparently active structure be confirmed
by observing similar activity from at least one “similar”
structure. Or, put differently, optimal HTS design practice
today is to test numerous small sets of “not quite duplicate”
structures. Of course, the “other applications” that subse-
quently emerged justify a continuing interest in “better
property spaces”.)

Encouraging evidence that objective comparison of the
neighborhood behaviors of different property spaces was
possible came at the spring 1995 American Chemical Society
meeting, where Rob Brown and Yvonne Martin described
how the Tanimoto coefficients of nonaliassed “2D finger-
prints” (MACSS keys) segregated actives from nonactives
significantly better than did other similar descriptors.22,105

Meanwhile, in response to a general feeling that a “propri-
etary 3D descriptor” would be an asset to the Optiverse
“design story”, I had begun experimenting with “topomers”.
The starting point was a conviction Bob Clark had previously
brought to Tripos, that is, that the investigation of structural
alignments for CoMFA should begin with “inertial align-
ment” of complete structures (as implemented within the
above-mentioned Selector program). In combinatorial library
design, where the basic task is to select a set of side chains,
the arguments in favor of such a “standardized conformer”
approach to 3D alignment seemed attractive to me. In
particular, superposition of attachment bonds, which all of
a set of side chains share by definition, was a compelling
new approach to the long-standing difficulty in shape
comparison of mutually orienting 3D molecular shapes.

The first topomer experiments, hierarchically clustering
the roughly 700 thiol-containing reagents offered in ACD
according to the differences in a standard CoMFA steric field
enclosing their topomer conformations, yielded results much
more convincing than I had expected.106 (Thereby initiating
an extraordinary and most encouraging trendsit seems to
me that topomers have always performed better than I expect
them to.) But there was an evident challenge in communicat-
ing these results. Few colleagues would have the time or
interest to evaluate hundreds of sets of clustered 3D structures
on a computer screen, as I had done. Was there some way,
without any access to large screening data sets such as Rob
and Yvonne had used, and considering only side chain
descriptors since combinatorial design was our purpose, to
objectively compare topomer steric shapes with other
descriptors? Plainly the literature does provide many ex-
amples of biological measurements for a set of structures
differing only in their side chains, even if those sets are not
very large. I began assembling such sets and regressing
differences in various candidate side chain properties against
the corresponding differences in bioactivities. But the result-
ing r2 values were statistically marginal, and the residual
plots were funny looking.

Dave Patterson was sure he could do better than these
validation efforts, and after a few days of tinkering and only
a few more days of argument he convinced me he had done
so. His “Patterson plots” test the existence of any neighbor-
hood behavior for a given descriptor and data set very
directly, by providing empirical rules for enumerating any
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counter-examples (appearing as data points within a forbid-
den upper left triangle, whenever any small structural change
produces a large biological change).107 Not only did Patterson
plots seem logically incontestable, they then ranked descrip-
tors in accord with my intuitive expectations. (Twenty years
earlier I had discovered a very high “BC(DEF)” intercorre-
lation among properties such as aqueous solubility, octanol/
water logP, molar refractivity, and boiling point.108 This
finding left me convinced that such scalar properties, no
matter how usefully related to “3D-orientation-averaged”
biological transport, would have little value in describing
“3D-orientation-specific” phenomena such as receptor bind-
ing.)

By the time all these concepts were all worked out, the
supporting experiments programmed and executed, patents
filed, and the first pair of publications drawn up, say early
in 1996, we were all thinking about a much more important
use for “neighborhood searching” than screening library
design. The virtual libraries which were readily accessible
in principle, by applying two or three simple synthetic steps
to commercially offered starting materials, reference many
orders of magnitude more “drug-like” compounds than the
total number of compounds ever characterized in the
literature. Could we think of ways to rapidly and effectively
identify the biologically most promising structures in such
vast virtual libraries, by performingm + n + o calculations
on its m + n + o individual “pieces” or “synthons” rather
than m × n × o calculations on its fully enumerated
“product” structures?

As an illustration of the methods we sought, consider how
rapid a virtual library search can be for all product structures
whose molecular weight is less than some upper bound. A
huge advantage compared with conventional structural
searching is that molecular weight comparison involves only
a single numerical operation. Furthermore, any synthons
whose individual molecular weights are greater than the
upper bound cannot yield acceptable products and are
immediately excluded. If the acceptably smallm’s, n’s, and
o’s remaining are then sorted and processed by descending
molecular weight, it will similarly not be necessary to
consider most of the remaining products, either. The more
restrictive the molecular weight criterion, the more restrictive
are these criteria, and the faster the search.

Of course, similarity in molecular weight does not predict
similarity in biological properties to any useful degree (as
confirmed by our descriptor validation studies). But, fortu-
nately, we did succeed in devising related methodological
short cuts with the two molecular descriptors for which we
had found the most consistent neighborhood behavior,
Tanimoto 2D fingerprints and topomers. It was also self-
evident by 1996 that the most accessible and versatile
packaging for such a new computational methodology would
be as a “Web application”, and thus ChemSpace was born.109

Since then I have been fully occupied by extending
ChemSpace in various directions, Fred Soltanshahi particu-
larly helping me with its programming, Kathe Andrews-
Cramer with its testing and use, and many colleagues at
Tripos Receptor Research (Bude, Cornwall, U.K.) and BMS
with its applications. Consistent success in these applications

so far, both published110,111and unpublished, has increased
my belief that topomers represent an unprecedentedly useful,
as well as novel and sometimes controversial, paradigm for
comparing molecules. Perhaps this story is only at its
beginning.

A Reminiscence about Chemical Diversity
Robert S. Pearlman

They say that necessity is the mother of invention. That
was certainly true of Concord! Early in 1986, despite a clear
indication that my logP model was based on the 3D structures
of a small training set of pollutants, the EPA sent me 2000
Smiles strings as a validation set for renewal of my largest
grant. The original version of Concord was hurriedly written
so that I could convert the 2000 Smiles to 3D and meet the
renewal deadline.

Very shortly after recovering from the panic of the grant
renewal, we realized that Concord could be used to convert
large databases to 3D and, thereby, to enable 3D searching
as a new approach to lead discovery. But not long after MDL
and Tripos introduced MACCS-3D and Unity, it occurred
to me that 3D searching within huge databases of “virtual”
compounds might be far more exciting and fruitful than 3D
searching within the typical corporate database of∼250 000
compounds (in the late 1980s). Thus, before I learned that
pioneers at Glaxo and elsewhere were starting to develop
methods for real combinatorial chemistry, our group began
working on a program for making databases of virtual
combinatorial compounds for 3D searching.Naturally, we
named the program CombinDBMaker. Once “library” emerged
as the standard term for a collection of combina-
torially generated products, we changed the name to
CombiLibMaker112smore descriptive andsomuch easier to
pronounce...

The 3D searching software of the early 1990s remained
too slow to search combinatorial libraries as large as we
could make. Also, I questioned whether it was really worth
searching all of the “redundant” products produced from the
trivial “R-groups” I was using in our early combinatorial
libraries. For these reasons, I began thinking about methods
for diverse subset selection. Shortly after that, I learned that
some industrial scientists were thinking about selecting
diverse, “representative” subsets for wet-lab screening while
others were thinking about selecting diverse subsets for actual
synthesis. The notion of diverse subset selection motivated
not only our group’s interest but everyone else’s interest in
“chemical diversity”, and software developers around the
world immediately seized upon the challenges and op-
portunities which that interest presented.

Unfortunately, opportunity frequently spawns competition,
and in my opinion, the flurry of articles presenting and
reviewing competitive claims for one diverse subset selection
algorithm over another or, even more ethereal, one measure
of “diversity” over another, comprise a rather sad chapter in
the annals of computer-assisted drug discovery. In retrospect,
these articles might be regarded as “much ado about
nothing.” Noncomputational industrial scientists delighted
in reporting that the results of screening diverse subsets were
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often no better (and sometimes slightly worse) than the
results of screening randomly chosen subsets.

Somewhat ironically, diverse subset selectionsthe task
which motivated our original interest in chemical diversitys
is now (or should be) generally regarded as the least useful
of all diversity-related tasks. In retrospect, the notion of
screening a diverse, “representative” subset of a screening
library seems somewhat naı¨ve. Chemistry-space metrics
(descriptors or fingerprints) must be applicable not only in
the context of today’s discovery target but in the context of
tomorrow’s as well. Indeed, chemistry-space metrics must
also be applicable in contexts wherein there is no reference
to a particular receptor. Imagine three compoundssA, B,
and Cswhich differ from each other by just a single
methylene group. Chemists regard such compounds as highly
similar and expect that “meaningful metrics” will place the
three compounds very near each other in chemistry-space.
Indeed, we reject metrics which do not meet this expectation.
Diverse subset selection might select either A or B or C or
some other compound to “represent” that region of chemistry-
space, and chemists are initially pleased with the notion that
resources are not wasted on screening the “redundant”,
similar compounds in the same region. However, the
literature abounds with examples demonstrating that appar-
ently trivial structural differences between homologues can
result in either trivial or drastic differences in the bioactivity
of the compounds. If compounds A and B are active and C
is notsa Very real possibility despite their similaritysthe
diverse subset selection algorithm is no more likely to select
A or B than C or some other compound to “represent” that
region of chemistry-space. Random subset selection could
possibly do just as well or even better since, unlike diverse
subset selection, random selection might choose both Aand
B.

We realized the potential folly of diverse subset selection
very early in the “diversity game”, but we also realized that
there were other, more useful “diversity-related tasks” which
could be addressed with valid chemistry-space metrics and
novel algorithms. Our diversity software was originally
named DiverseSelector, but we quickly changed the name
to DiverseSolutions113 to reflect that realization. The same
BCUT metrics2 we originally developed to enable cell-based
diverse subset selection in a low-dimensional chemistry-space
have proven extremely useful for both diverse and focused
combinatorial library design, hit/lead follow-up based on
iterative near-neighbor searching, rational compound acquisi-
tion strategies, meaningful methods for comparing two or
more populations of compounds, computer-graphic visualiza-
tion of actual coordinates of compounds (actives or entire
libraries) in chemistry-space, etc.114-116

BCUT metrics can be computed based on either a 3D or
2D representation of chemical structure. While 3D-BCUTs
appear to offer some advantage for applications within a
particular combinatorial library, it appears that 2D-BCUTs
work just as well when dealing with a more diverse
population of compounds. Thus, recalling that our lab’s
contributions to the field of “chemical diversity” were
originally motivated by our work on Concord, it seems
entirely fitting to close this reminiscence by noting an

amusing similarity. Just as drug discovery often benefits by
serendipity, so too does the “discovery” of new methods for
computer-assisted drug discovery. At least that is how things
go in our lab.

Molecular Diversity: Molecular Properties to 3D
Pharmacophore Fingerprints New

Jonathan S. Mason

Our interests in “diversity” began at the Rhone-Poulenc,
Dagenham, U.K., CADD group from a need to be able
partition the corporate database for screening, and they
continued with force with the arrival of combinatorial
chemistry design as one of our major tasks. Partitioning, or
cell-based methods, appealed to the group, as it is possible
to see both what is there and what is missing, in absolute
terms and between databases without any need for reanalysis.
Three-dimensional database searching for lead generation
became an early success for the CADD group, providing a
clear deliverable, i.e., one that could not have occurred
anyway within medicinal chemistry without the use of
CADD methods. Multiple 3D pharmacophoric shapes or
“pharmacophore fingerprints”117-125 from systematic analyses
have long been the focus of research interest of ours for the
early pharmacophore-derived query (PDQ) method117,118

based on automated 3D database searching, Stephen Pickett
and Iain McLay, and later Dan Cheney for site-derived
pharmacophores. The fingerprints provided us with a power-
ful approach in which the “descriptor” can be used in a
partitioning, cell-based way, a compound generally occupy-
ing many cells instead of just one. Initial efforts were directed
to profiling ligands, but this was later extended to protein
sites, a natural extension to site-based 3D database search-
ing: complementary site-points with associated pharma-
cophoric features are first generated, and the fingerprint is
either generated directly from these121 or by using the protein
site as a steric constraint during the fitting of matching
conformations.124,126A significant increase in the amount of
shape information and resolution was found using four-point
pharmacophores, including the ability to distinguish chirality,
a fundamental requirement for many ligand-receptor inter-
actions.122,127

Despite our passion for 3D database searching and
pharmacophores, when our first diversity-related project came
along 10 years ago we had to make a more pragmatic choice.
The challenge given to us was to come up with a “rational”
screening set of 1000 compounds culled from the entire
corporate database (>150 000) that “represented” the drug-
like diversity of the entire set. This would then be used for
the many lower throughput biological screens. Although we
were concerned whether this could be effectively achieved,
the priority of the need at the time meant that a major part
of the resources could be put into a single project, a rarer
opportunity now. Iain McLay (now at Glaxo-Wellcome) and
myself had been looking into molecular/physicochemical
properties and pharmacophores, and when Richard Lewis
(now at Eli Lilly) joined the group, he was able to focus a
dedicated effort, leading to the DPD (“diverse property
derived”)128 partitioning method. We decided for pragmatic
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reasons to look for six reasonably noncorrelated molecular/
physicochemical properties/descriptors that could be relevant
to ligand-receptor interactions and use these to select the
set. This turned out to be harder than we thought, as so many
potentially relevant indices had too much pairwise correlation
with descriptors already chosen. We ended up creating two
“new” descriptor combinations, something that was not at
all in our initial plans! An intuitive/subjective medicinal
chemistry approach was used to select and evaluate descrip-
tors, which then had to pass the pairwise correlation filter.
The polarity descriptor (the normalized sum of the squares
of the atomic electrotopological indices) appeared to be able
to score in a single number the polar nature of compounds
better than descriptors from just partial charges. The “aro-
matic density” descriptor (the number of aromatic rings
divided by the molar volume) was the result of a lengthy
search to find a sixth descriptor with acceptable pairwise
correlation that used “relevant” parameters. These were used
together with counts of hydrogen bond acceptors and donors,
a flexibility index, and calculated octanol-water logP. We
considered logP a key physicochemical property, but its use
in fact caused much divided discussion among the medicinal
chemists as to its relevance for ligand-receptor interactions,
the goal of the screening set. We had chosen it knowing
that cell-based assays would also be used and it could be
directly relevant. Together with the hydrogen bond counts
and molecular weight (MW), it is now part of Lipinski’s104

“rule of 5” absorption guidelines.

The DPD method was designed to select “diverse” rather
than “representative” compounds. Well-represented chemo-
types possibly only had a few compounds in the set.
Unfortunately this was too diverse for many, exploring too
much the extremes of the chemistry space expressed by all
the compounds. By design, only a very few hits would be
expected for a particular screen, which could be followed
up with “similar” compounds. The DPD descriptors together
with MW were, however, found to be useful for profiling
combinatorial libraries, to moderate large deviations from
“drug-like” databases. This extended set includes the Lipinski
“rule of 5” descriptors.

When the follow-up request for a larger set of 10 000
compounds came, issues such as the diversity of the
compounds and the low hit rate led us to abandon such a
“diversity” approach for a more “representative” set. Richard
got a RPR global project going, involving Isabelle Morize
and Claude Luttman in France and Paul Menard and myself
in the United States, using Jarvis-Patrick clustering of 2D
structural fingerprints (Daylight). “Cascaded” clustering was
devised to handle the large number of singletons.129 Although
we had been working on automating a systematic 3D
pharmacophoric search with the new PDQ method,117,118we
opted against using this approach because of the large
calculation times involved and the lack of a validated method
to use such descriptors effectively to pick a representative
subset.

Three-dimensional pharmacophoric approaches had been
a focus of research interest of Iain and myself, and extensive
customized atom-typing parametrization and conformational
sampling were being developed. We had been inspired by

the pioneering work of John Van Drie and Yvonne Martin
with the Aladdin 3D database searching system,130 and we
are grateful to Yvonne for supplying code to enable us to
try the software. The Chem-X software119 became our
standard small molecule molecular modeling software, and
we focused our development efforts around the Chem-DBS-
3D module that provided 3D database searching capabilities,
with conformational sampling performed “on-the-fly” at
search time for each search. We were trying to develop a
“diversity” method involving pharmacophores by determin-
ing “all” the potential pharmacophores a molecule could
exhibit through 3D searching using multiple queries (“all”
being pragmatically limited to three points, six distance
ranges, and six feature possibilities: hydrogen bond acceptor,
hydrogen bond donor, acid, base, aromatic ring, and hydro-
phobe). Again the arrival of the next member of the group
enabled a focused internal effort to a finalized new method,
with Stephen Pickett (now at Roche) then leading efforts on
the pharmacophore-derived query (PDQ) method.117,118This
was based on automated systematic 3D database searching,
using the Chem-X/ChemDBS-3D software, with extensive
scripts. A “fingerprint” of potential pharmacophores matched
for each molecule was thus calculated, with conformational
flexibility being taken into account. The conformational
analysis stage was rate limiting, and it forced us to limit
ourselves to about 6000 3D searches per molecule to provide
a bearable throughput on the CPUs of that time. Considerable
effort was put into the atom typing parametrization to ensure
that pharmacophoric features were correctly assigned (to
avoid both false negatives and false positives) and to provide
customized conformational sampling. As the queries were
actual 3D database queries, considerable flexibility was
possible in the actual definitions, with additional constraints
possible. The final output per molecule was a bit string
indicating which pharmacophore queries could be matched
(i.e., have the molecule as 3D database search hit). A key
issue was hydrophobic features, which are key to so many
ligand-receptor interactions, and we tried many different
methods to assign them. A systematic addition of “dummy
atom” hydrophobe centroids to any potential groups of atoms
was followed by an evaluation of a simplified local “elec-
trostatic potential” to eliminate unsuitable dummy atoms.
This gave us reasonably intuitive results, achieving the
objective of being able to automatically place hydrophobic
centers in positions, which usually would be selected by an
experienced medicinal chemist. It suffered from the disad-
vantage of a relatively time-consuming preprocessing of the
molecules to assign the hydrophobe features, and it was later
dropped in favor of the very rapid method added to Chem-X
that only analyzes bond polarities and gave reasonable results
after some fine-tuning of the atom electronegativities.
Hydrophobic feature assignment has remained a problem
generally with 3D database systems, as assignment at search
time based on substructure/Markush queries can be difficult
due to the large number of possibilities, and/or generate too
many centers, such as when just atom types are used.

We were excited by the potential power of the pharma-
cophore fingerprinting approach, using parameters for simi-
larity and diversity that we all felt were more relevant for
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ligand-receptor interactions. We decided that the investment
of computational time needed to systematically calculate the
3D pharmacophoric shapes with conformational flexibility
was a worthwhile goal, and as machine power increased we
were able to use this diversity/similarity method for practical
applications. The proposal of Chemical Design to add such
a method to Chem-X,119as the ChemDiverse module, enabled
us to publish our work, which was otherwise considered a
proprietary idea. Nowadays, companies, including large
pharmaceutical ones, may opt to patent such methods, and
despite 5 years of prior art, such things are happening! We
pursued development of the method with Chemical Design
from thereon, as the PDQ method was slow from having to
repeat the conformational sampling for each pharmacophore
query, whereas with ChemDiverse only a single conforma-
tional sampling per molecule was needed. This enabled
around a million three-point pharmacophores to be resolved,
something not possible with individual searches! Collabora-
tive funding led first to the development of four-point
pharmacophore fingerprints121,124 and then to “design in
receptor” (DiR),117,125a type of protein site defined diversity
method discussed later.

For the development of the four-point pharmacophore
fingerprints, we thus decided that machine memory and
power were going to both increase and become cheaper, and
persuading Chemical Design to collaborate on developing a
fairly brute-force extension of the three-point ChemDiverse
method to four-point pharmacophores was considered very
important. Driving forces for the four-point pharmacophores
included the need to distinguish chirality (that a planar three-
pont pharmacophore never can) and to include more shape
information (ligand-receptor docking studies showing shape
to be a major contributor). Three-point pharmacophore
fingerprints do, of course, contain a lot of useful information,
particularly when a count of the occurrence is also used with
sets of molecules. Encouraged by early results, which had
rather slow calculations, speed improvements were soon
incorporated, to make the method usable for practical
applications. On Silicon Graphics R1200 machines, only a
second or two can be used per molecule, including confor-
mational sampling with a bump check to exclude inaccessible
conformations. Chemical Design had envisaged the output-
ting of the pharmacophore fingerprints (“keys”) more for
databases than individual molecules, but as we wished to
use individual molecule fingerprints, more compact formats
than the Chem-X binary key were developed which only
store pharmacophores that are matched (a: Pickett, S. D.
Unpublished results. b: Cho, S. J.; Mason J. S. Unpublished
results).

These pharmacophore fingerprints, an extension to the
original PDQ method, are now used at BMS routinely for
many virtual screening and combinatorial library design
applications, and they have been even more useful than I
could have hoped for, given their limitations, such as the
mixing of information for all the conformations and the
limited shape description. The fingerprints (∼10 and 2.3
million four-point possibilities with 10 and 7 distance ranges,
respectively, per feature-feature distance) give a common
frame of reference for comparing different ligands and for

comparing ligands to protein structures using the comple-
mentary potential pharmacophores. Other software packages
are now able to calculate three-/four- point pharmacophore
fingerprints. The development of methods for “relative”
diversity was another useful extension to the method,
focusing the diversity/similarity measure around pharma-
cophoric shapes that contain a substructure or feature of
interest. We used this extensively at the RPR United States
site for the design of combinatorial libraries using G-protein
coupled receptor “privileged” substructures.122,123More than
100 000 compounds were synthesized using condensation
reactions such as the Ugi reaction. The quantification
provided by the fingerprints was useful to indicate when no
new relevant “diversity” could obtained from a particular
reaction, as was the ability to interpret “missing diversity”
in terms of pharmacophoric features and shapes, superim-
posed if required on the reference molecules giving rise to
them. We have also found them very useful for 3D similarity
searching for lead identification, enabling multiple potential
pharmacophore hypotheses to be readily handled. This is
particularly useful where small peptides are the input, an
input that many other methods cannot readily handle if the
desired result is not another peptide. One or more flexible
molecules have been successfully used as input for new lead
generation, without the need to derive a refined model. Using
precalculated fingerprints, stored efficiently, it is possible
to do 3D pharmacophoric searching for 500 000 compounds
in minutes.

We found for combinatorial library design that it could
be more effective to combine an optimization of pharma-
cophore diversity (or similarity) with a simultaneous opti-
mization of other properties. Simple profiling properties (e.g.,
DPD flexibility, “shape” estimates, pharmacophoric promis-
cuity) were initially used, and through excellent collaboration
with Professor Bob Pearlman we became involved with other
atomic/molecular properties, the BCUT descriptors (Diverse-
Solutions, DVS).114,131 We found that chemistry spaces
derived with these were very useful for many diversity-
related applications including library design. Complementary
information to the pharmacophore fingerprints is obtained,
and both methods were used to create a representative subset
of combinatorial libraries synthesized at RPR.122,123 The
development of the use of both partitioning methods, the
pharmacophore fingerprints and the BCUT cell-based chem-
istry spaces, has continued at BMS, and a paper illustrating
the simultaneous optimization of both pharmacophoric and
BCUT diversity using a simulated annealing method devel-
oped by Brett Beno at our Wallingford site is in press.132

Fingerprint calculation time is still rate-limiting for large
(>1 million) virtual libraries, and initial analysis by much
faster diversity methods, such as the DVS BCUT metrics,
or at the reagent level is generally needed. Our bias has been
to use whole molecule descriptors for diversity-related
applications such as combinatorial library design that are
optimally measured on the products of the reaction, rather
than the reagents. This is more computationally intensive
but to us had many advantages, including the ability to
compare different libraries, databases, etc. Reagent profiling
has been useful to select diverse subsets (reagents with
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similar pharmacophore fingerprints are likely to produce
products that have similar fingerprints), and to make these
fingerprints more representative of the products, we have
used a minimally substituted scaffold. Alternative strategies
we have used to avoid having to calculate fingerprints for
too large number of molecules include using small repre-
sentative sets of reagents for all but one position and then
iteratively optimizing each reagent possibility.122 We have
often used the fingerprints to fill “diversity voids”, a useful
application of partition (cell)-based methods,120,133in which
it is necessary to use the whole molecule fingerprints.

Dan and myself had been pharmacophorically profiling
protein binding sites by generating complementary site-points
(e.g., using the GRID program) and connecting these to
generate a hypothetical molecule. Fingerprints were then
generated as for a normal molecule (but with no conforma-
tional analysis) and used for screening and selectivity
studies.121 We collaborated again with Chemical Design to
extend the pharmacophore fingerprint method from ligands
to protein binding sites to produce the “design in receptor”
(DiR)117,125module. A single conformational analysis of the
ligand evaluates the fit to all the pharmacophore hypotheses
in the site, using the shape of the site as a constraint. This
project was jointly funded by RPR and Bristol-Myers Squibb,
my new group. It provided for us a new type of protein site
defined diversity, the “diversity space” being the total
possible potential complementary site pharmacophores (three-
or four-point), and outputting for each molecule how many
of these can be matched (together with an optional database
of docked conformations). The method lacks any traditional
scoring method, but unlike an energy-based score (where
all the top scoring molecules could be binding in the same
way) it enables a choice of molecules (from a database or
for a combinatorial library design) that explores the maxi-
mum number of different binding orientations (removing
possible force-field bias, and leaving it to the biological
screening to find the more active compounds). The method
could be improved by using external software such as DOCK
to obtain a score to filter out molecules with low predicted
binding.

For the future, with the current decision by Oxford
Molecular to no longer develop Chem-X, and then the
acquisition of Oxford Molecular by Molecular Simulations
Inc., the further development of the 3D pharmacophore
fingerprint methods therein is less certain, but there is clearly
interest and activity from many parties in developing software
methods to calculate the fingerprints. The best balance in
the future will need to be determined for a particular
application of the choice of pharmacophore type (two-, three-,
four-points or more, the distance ranges, the features), the
use of a pharmacophore count (per molecule, per conforma-
tion), the depth of conformational sampling, and the simul-
taneous optimization of other properties (2D, molecular and
physicochemical, 3D shape...), and more validation studies
need to be done to determine the “best” method for different
applications. With the ever-increasing number of protein
target structures, methods for structure-based or “biological”

diversity will become more important. It will be exciting to
see how our ligand-based hypotheses map onto the target
structures.

Concluding Remarks

This set of perspectives reveals that the definition, calcula-
tion, and uses of molecular diversity remain as diverse as
the people who discuss and use them. It highlights differing
opinions on several areas of interest. It is up to the user to
decide if these differences are significant or not. The true
test of these ideas is whether they improve the success rate
of the experimental collaborators.

One consensus is apparent from the articles. Several of
the contributors point out the folly of assuming that only a
few thousand molecules can represent a diverse collection
of molecules and that biological screening has moved from
the idea of an informative subset to the implementation of
screening every compound available.

However, diversity measures continue to be used as part
of the design of combinatorial libraries and to select vendor
compounds to augment a compound collection. Although not
emphasized in these reminiscences, most companies use
filters to eliminate compounds that, even if active, would
not be good leads for further chemistry. Usually this includes
removing reactive or unstable compounds and considering
if the molecules are drug-like134,135 and if they possess
features consistent with permeability.104 For combinatorial
libraries, the combinatorial constraint may preclude strict
criteria for removal, but these and other considerations are
part of the design process.

Diversity and its complement, similarity, are also consid-
ered when designing a targeted library: One would like the
designed compounds to be similar to the known actives but
different enough that the structure-activity relationships are
well explored. Eric Martin, Cramer, and Pearlman provide
different strategies for this use of diversity measures.

Even though molecular diversity is considered to be an
important criterion for library design, the very nature of an
optimally diverse data set is open to discussion. Is maximum
diversity the best solution, or is “just diverse enough” a better
approach? Should diversity be based on clustering, maximal
diverse subset selection, or cell-based approaches? How does
diversity in a library jibe with the universal chemistry
experience that often enough very close analogues have very
different biological or other properties?

This review emphasizes that computational chemists are
faced with the challenging problem of how to convert
molecular structures into the numbers recognizable by
computer programs but relevant to the design goal: again
this is an area of diversity of opinion. Although no one would
argue that molecules are not three-dimensional, how to
represent this three-dimensionality remains a challenge.
Should it be by pharmacophores, by 3D properties embedded
into a lower-dimensional space, or implicitly by the types
of 2D substructures contained in the molecules? If a true
three-dimensional representation is chosen, is one conforma-
tion per molecule sufficient or are “all” low-energy confor-
mations needed? How does one ensure that the selected
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molecules are also diverse in traditional properties such as
lipophilicity, size, and charge distribution? Clearly, for uses
of molecular diversity other than searching for new drugs,
different types of molecular descriptors will be needed.

There are certain things that all contributors agree upon:
Most importantly, the limitations in molecular diversity are
no longer computer power but rather human intellectual
insight. While challenges remain for data sets of greater than
a million molecules, even larger data sets (26 million) have
been studied111 and sensible short-cuts are available.
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